Кислородные кислоты хлора и их соли. Соли кислородных кислот хлора. Сила кислот возрастает со степенью окисления

Cl 2 при об. Т - газ желто-зеленого цвета с резким удушающим запахом, тяжелее воздуха - в 2,5 раза, малорастворим в воде (~ 6,5 г/л); х. р. в неполярных органических растворителях. В свободном виде встречается только в вулканических газах.


Способы получения

Основаны на процессе окисления анионов Cl -


2Cl - - 2e - = Cl 2 0

Промышленный

Электролиз водных растворов хлоридов, чаще - NaCl:


2NaCl + 2Н 2 O = Cl 2 + 2NaOH + H 2

Лабораторные

Окисление конц. HCI различными окислителями:


4HCI + MnO 2 = Cl 2 + МпCl 2 + 2Н 2 O


16НСl + 2КМпО 4 = 5Cl 2 + 2MnCl 2 + 2KCl + 8Н 2 O


6HCl + КСlO 3 = ЗCl 2 + KCl + 3Н 2 O


14HCl + К 2 Сr 2 O 7 = 3Cl 2 + 2CrCl 3 + 2KCl + 7Н 2 O

Химические свойства

Хлор - очень сильный окислитель. Окисляет металлы, неметаллы и сложные вещества, превращаясь при этом в очень устойчивые анионы Cl - :


Cl 2 0 + 2e - = 2Cl -

Реакции с металлами

Активные металлы в атмосфере сухого газообразного хлора воспламеняются и сгорают; при этом образуются хлориды металлов.



Cl 2 + 2Na = 2NaCl


3Cl 2 + 2Fe = 2FeCl 3


Малоактивные металлы легче окисляются влажным хлором или его водными растворами:



Cl 2 + Сu = CuCl 2


3Cl 2 + 2Аu = 2AuCl 3

Реакции с неметаллами

Хлор непосредственно не взаимодействует только с O 2 , N 2 , С. С остальными неметаллами реакции протекают при различных условиях.


Образуются галогениды неметаллов. Наиболее важной является реакция взаимодействия с водородом.



Cl 2 + Н 2 =2НС1


Cl 2 + 2S (расплав) = S 2 Cl 2


ЗCl 2 + 2Р = 2РCl 3 (или РCl 5 - в избытке Cl 2)


2Cl 2 + Si = SiCl 4


3Cl 2 + I 2 = 2ICl 3

Вытеснение свободных неметаллов (Вr 2 , I 2 , N 2 , S) из их соединений


Cl 2 + 2KBr = Br 2 + 2KCl


Cl 2 + 2KI = I 2 + 2KCl


Cl 2 + 2HI = I 2 + 2HCl


Cl 2 + H 2 S = S + 2HCl


ЗСl 2 + 2NH 3 = N 2 + 6HCl

Диспропорционирование хлора в воде и водных растворах щелочей

В результате самоокисления-самовосстановления одни атомы хлора превращаются в анионы Cl - , а другие в положительной степени окисления входят в состав анионов ClO - или ClO 3 - .


Cl 2 + Н 2 O = HCl + НClO хлорноватистая к-та


Cl 2 + 2КОН =KCl + KClO + Н 2 O


3Cl 2 + 6КОН = 5KCl + KClO 3 + 3Н 2 O


3Cl 2 + 2Са(ОН) 2 = CaCl 2 + Са(ClO) 2 + 2Н 2 O


Эти реакции имеют важное значение, поскольку приводят к получению кислородных соединений хлора:


КClO 3 и Са(ClO) 2 - гипохлориты; КClO 3 - хлорат калия (бертолетова соль).

Взаимодействие хлора с органическими веществами

а) замещение атомов водорода в молекулах ОВ

б) присоединение молекул Cl 2 по месту разрыва кратных углерод-углеродных связей


H 2 C=CH 2 + Cl 2 → ClH 2 C-CH 2 Cl 1,2-дихлорэтан


HC≡CH + 2Cl 2 → Cl 2 HC-CHCl 2 1,1,2,2-тетрахлорэтан

Хлороводород и соляная кислота

Газообразный хлороводород

Физические и химические свойства

HCl - хлорид водорода. При об. Т - бесцв. газ с резким запахом, достаточно легко сжижается (т. пл. -114°С, т. кип. -85°С). Безводный НСl и в газообразном, и в жидком состояниях неэлектропроводен, химически инертен по отношению к металлам, оксидам и гидроксидам металлов, а также ко многим другим веществам. Это означает, что в отсутствие воды хлороводород не проявляет кислотных свойств. Только при очень высокой Т газообразный HCl реагирует с металлами, причем даже такими малоактивными, как Сu и Аg.
Восстановительные свойства хпорид-аниона в HCl также проявляются в незначительной степени: он окисляется фтором при об. Т, а также при высокой Т (600°С) в присутствии катализаторов обратимо реагирует с кислородом:


2HCl + F 2 = Сl 2 + 2HF


4HCl + O 2 = 2Сl 2 + 2Н 2 O


Газообразный HCl широко используется в органическом синтезе (реакции гидрохлорирования).

Способы получения

1. Синтез из простых веществ:


Н 2 + Cl 2 = 2HCl


2. Образуется как побочный продукт при хлорировании УВ:


R-H + Cl 2 = R-Cl + HCl


3. В лаборатории получают действием конц. H 2 SO 4 на хлориды:


H 2 SО 4 (конц.) + NaCl = 2HCl + NaHSО 4 (при слабом нагревании)


H 2 SО 4 (конц.) + 2NaCl = 2HCl + Na 2 SО 4 (при очень сильном нагревании)

Водный раствор HCl - сильная кислота (хлороводородная, или соляная)

HCl очень хорошо растворяется в воде: при об. Т в 1 л Н 2 O растворяется ~ 450 л газа (растворение сопровождается выделением значительного количества тепла). Насыщенный раствор имеет массовую долю HCl, равную 36-37 %. Такой раствор имеет очень резкий, удушающий запах.


Молекулы HCl в воде практически полностью распадаются на ионы, т. е. водный раствор HCl является сильной кислотой.

Химические свойства соляной кислоты

1. Растворенный в воде HCl проявляет все общие свойства кислот, обусловленные присутствием ионов Н +


HCl → H + + Cl -


Взаимодействие:


а) с металлами (до Н):


2HCl 2 + Zn = ZnCl 2 + H 2


б) с основными и амфотерными оксидами:


2HCl + CuO = CuCl 2 + Н 2 O


6HCl + Аl 2 O 3 = 2АlCl 3 + ЗН 2 O


в) с основаниями и амфотерными гидроксидами:


2HCl + Са(ОН) 2 = CaCl 2 + 2Н 2 О


3HCl + Аl(ОН) 3 = АlСl 3 + ЗН 2 O


г) с солями более слабых кислот:


2HCl + СаСО 3 = CaCl 2 + СO 2 + Н 3 O


HCl + C 6 H 5 ONa = С 6 Н 5 ОН + NaCl


д) с аммиаком:


HCl + NH 3 = NH 4 Cl


Реакции с сильными окислителями F 2 , MnO 2 , KMnO 4, KClO 3, K 2 Cr 2 O 7 . Анион Cl - окисляется до свободного галогена:


2Cl - - 2e - = Cl 2 0


Уравнения реакция см. "Получение хлора". Особое значение имеет ОВР между соляной и азотной кислотами:


Реакции с органическими соединениями

Взаимодействие:


а) с аминами (как органическими основаниями)


R-NH 2 + HCl → + Cl -


б) с аминокислотами (как амфотерными соедимнеиями)


Оксиды и оксокислоты хлора

Кислотные оксиды


Кислоты


Соли

Химические свойства

1. Все оксокислоты хлора и их соли являются сильными окислителями.


2. Почти все соединения при нагревании разлагаются за счет внутримолекулярного окисления-восстановления или диспропорционирования.



Хлорная известь

Хлорная (белильная) известь - смесь гипохлорита и хлорида кальция, обладает отбеливающим и дезинфицирующим действием. Иногда рассматривается как пример смешанной соли, имеющей в своем составе одновременно анионы двух кислот:


Жавелевая вода

Водный раствор хлорида и гапохлорита калия KCl + KClO + H 2 O

15.1. Общая характеристика галогенов и халькогенов

Галогены ("рождающие соли") – элементы VIIA группы. К ним относятся фтор, хлор, бром и йод. В эту же группу входит и неустойчивый, а потому не встречающийся в природе астат. Иногда к этой группе относят и водород.
Халькогены ("рождающие медь") – элементы VIA группы. К ним относятся кислород, сера, селен, теллур и практически не встречающийся в природе полоний.
Из восьми существующих в природе атомов элементов этих двух групп наиболее распространены атомы кислорода (w = 49,5 %), за ним по распространенности следуют атомы хлора (w = 0,19 %), далее – серы (w = 0,048 %), затем – фтора (w = 0,028 %). Атомов остальных элементов в сотни и тысячи раз меньше. Кислород вы уже изучали в восьмом классе (гл. 10), из остальных элементов наиболее важными являются хлор и сера – с ними вы и познакомитесь в этой главе.
Орбитальные радиусы атомов галогенов и халькогенов невелики и лишь у четвертых атомов каждой группы приближаются к одному ангстрему. Это приводит к тому, что все эти элементы, представляют собой элементы, образующие неметаллы и только теллур и йод проявляют некоторые признаки амфотерности.
Общая валентная электронная формула галогенов – ns 2 np 5 , а халькогенов – ns 2 np 4 . Маленькие размеры атомов не позволяют им отдавать электроны, напротив, атомы этих элементов склонны их принимать, образуя однозарядные (у галогенов) и двухзарядные (у халькогенов) анионы. Соединяясь с небольшими атомами, атомы этих элементов образуют ковалентные связи. Семь валентных электронов дают возможность атомам галогенов (кроме фтора) образовывать до семи ковалентных связей, а шесть валентных электронов атомов халькогенов – до шести ковалентных связей.
В соединениях фтора – самого электроотрицательного элемента – возможна только одна степень окисления, а именно –I. У кислорода, как вы знаете, максимальная степень окисления +II. У атомов остальных элементов высшая степень окисления равна номеру группы.

Простые вещества элементов VIIA группы однотипны по строению. Они состоят из двухатомных молекул. При обычных условиях фтор и хлор – газы, бром – жидкость, а йод – твердое вещество. По химическим свойствам эти вещества сильные окислители. Из-за роста размеров атомов с увеличением порядкового номера их окислительная активность снижается.
Из простых веществ элементов VIA группы при обычных условиях газообразны только кислород и озон, состоящие из двухатомных и трехатомных молекул, соответственно; остальные – твердые вещества. Сера состоит из восьмиатомных циклических молекул S 8 , селен и теллур из полимерных молекул Se n и Te n . По своей окислительной активности халькогены уступают галогенам: сильным окислителем из них является только кислород, остальные же проявляют окислительные свойства в значительно меньшей степени.

Состав водородных соединений галогенов (НЭ) полностью отвечает общему правилу, а халькогены, кроме обычных водородных соединений состава H 2 Э, могут образовывать и более сложные водородные соединения состава Н 2 Э n цепочечного строения. В водных растворах и галогеноводороды, и остальные халькогеноводороды проявляют кислотные свойства. Их молекулы – частицы-кислоты. Из них сильными кислотами являются только HCl, HBr и HI.
Для галогенов образование оксидов нехарактерно, большинство из них неустойчиво, однако высшие оксиды состава Э 2 О 7 известны для всех галогенов (кроме фтора, кислородные соединения которого не являются оксидами). Все оксиды галогенов – молекулярные вещества, по химическим свойствам – кислотные оксиды.
В соответствии со своими валентными возможностями халькогены образуют два ряда оксидов: ЭО 2 и ЭО 3 . Все эти оксиды кислотные.

Гидроксиды галогенов и халькогенов представляют собой оксокислоты.

Составьте сокращенные электронные формулы и энергетические диаграммы атомов элементов VIA и VIIA групп. Укажите внешние и валентные электроны.

Хлор самый распространенный, а потому и важнейший из галогенов.
В земной коре хлор встречается в составе минералов: галита (каменной соли) NaCl, сильвина KCl, карналлита KCl·MgCl 2 ·6H 2 O и многих других. Основной промышленный способ получения – электролиз хлоридов натрия или калия.

Простое вещество хлор – газ зеленоватого цвета с едким удушающим запахом. При –101 °С конденсируется в желто-зеленую жидкость. Хлор весьма ядовит, во время первой мировой войны его даже пытались использовать в качестве боевого отравляющего вещества.
Хлор – один из самых сильных окислителей. Он реагирует с большинством простых веществ (исключение: благородные газы, кислород, азот, графит, алмаз и некоторые другие). В результате образуются галогениды:
Cl 2 + H 2 = 2HCl (при нагревании или на свету);
5Cl 2 + 2P = 2PCl 5 (при сжигании в избытке хлора);
Cl 2 + 2Na = 2NaCl (при комнатной температуре);
3Cl 2 + 2Sb = 2SbCl 3 (при комнатной температуре);
3Cl 2 + 2Fe = 2FeCl 3 (при нагревании).
Кроме того хлор может окислять и многие сложные вещества, например:
Cl 2 + 2HBr = Br 2 + 2HCl (в газовой фазе и в растворе);
Cl 2 + 2HI = I 2 + 2HCl (в газовой фазе и в растворе);
Cl 2 + H 2 S = 2HCl + S (в растворе);
Cl 2 + 2KBr = Br 2 + 2KCl (в растворе);
Cl 2 + 3H 2 O 2 = 2HCl + 2H 2 O + O 2 (в концентрированном растворе);
Cl 2 + CO = CCl 2 O (в газовой фазе);
Cl 2 + C 2 H 4 = C 2 H 4 Cl 2 (в газовой фазе).
В воде хлор частично растворяется (физически), а частично обратимо реагирует с ней (см. § 11.4 в). С холодным раствором гидроксида калия (и любой другой щелочи) аналогичная реакция протекает необратимо:

Cl 2 + 2OH = Cl + ClO + H 2 O.

В результате образуется раствор хлорида и гипохлорита калия. В случае реакции с гидроксидом кальция образуется смесь CaCl 2 и Ca(ClO) 2 , называемая хлорной известью.

С горячими концентрированными растворами щелочей реакция протекает иначе:

3Cl 2 + 6OH = 5Cl + ClO 3 + 3H 2 O.

В случае реакции с KOH так получают хлорат калия, называемый бертолетовой солью.
Хлороводород – единственное водородное соединение хлора. Этот бесцветный газ с удушающим запахом хорошо растворим в воде (нацело реагирует с ней, образуя ионы оксония и хлорид-ионы (см. § 11.4). Его раствор в воде называют соляной или хлороводородной кислотой. Это один из важнейших продуктов химической технологии, так как расходуется соляная кислота во многих отраслях промышленности. Огромное значение она имеет и для человека, в частности потому, что содержится в желудочном соке, способствуя перевариванию пищи.
Хлороводород раньше получали в промышленности, сжигая хлор в водороде. В настоящее время потребность в соляной кислоте почти полностью удовлетворяется за счет использования хлороводорода, образующегося в качестве побочного продукта при хлорировании различных органических веществ, например, метана:

CH 4 + Cl 2 = CH 3 + HCl

И лаборатории хлороводород получают из хлорида натрия, обрабатывая его концентрированной серной кислотой:
NaCl + H 2 SO 4 = HCl + NaHSO 4 (при комнатной температуре);
2NaCl + 2H 2 SO 4 = 2HCl + Na 2 S 2 O 7 + H 2 O (при нагревании).
Высший оксид хлора Cl 2 O 7 – бесцветная маслянистая жидкость, молекулярное вещество, кислотный оксид. В результате реакции с водой образует хлорную кислоту HClO 4 , единственную оксокислоту хлора, существующую как индивидуальное вещество; остальные оксокислоты хлора известны только в водных растворах. Сведения об этих кислотах хлора приведены в таблице 35.

Таблица 35.Кислоты хлора и их соли

С/O
хлора

Формула
кислоты

Название
кислоты

Сила
кислоты

Название
солей

хлороводородная

хлорноватистая

гипохлориты

хлористая

хлорноватая

перхлораты

Большинство хлоридов растворимо в воде. Исключение составляют AgCl, PbCl 2 , TlCl и Hg 2 Cl 2 . Образование бесцветного осадка хлорида серебра при добавлении к исследуемому раствору раствора нитрата серебра – качественная реакция на хлорид-ион:

Ag + Cl = AgCl

Из хлоридов натрия или калия в лаборатории можно получить хлор:

2NaCl + 3H 2 SO 4 + MnO 2 = 2NaHSO 4 + MnSO 4 + 2H 2 O + Cl 2

В качестве окислителя при получении хлора по этому способу можно использовать не только диоксид марганца, но и KMnO 4 , K 2 Cr 2 O 7 , KClO 3 .
Гипохлориты натрия и калия входят в состав различных бытовых и промышленных отбеливателей. Хлорная известь также используется как отбеливатель, кроме того ее используют как дезинфицирующее средство.
Хлорат калия используют в производстве спичек, взрывчатых веществ и пиротехнических составов. При нагревании он разлагается:
4KClO 3 = KCl + 3KClO 4 ;
2KClO 3 = 2KCl + O 2 (в присутствии MnO 2).
Перхлорат калия тоже разлагается, но при более высокой температуре: KClO 4 = KCl + 2O 2 .

1.Составьте молекулярные уравнения реакций, для которых в тексте параграфа приведены ионные уравнения.
2.Составьте уравнения реакций, данных в тексте параграфа описательно.
3.Составьте уравнения реакций, характеризующих химические свойства а) хлора, б) хлороводорода (и соляной кислоты), в) хлорида калия и г) хлорида бария.
Химические свойства соединений хлора

В различны условиях устойчивы различные аллотропные модификации элемента сера. При обычных условиях простое вещество сера представляет собой желтое хрупкое кристаллическое вещество, состоящее из восьмиатомных молекул:

Это так называемая ромбическая сера (или -сера) S 8 .(Название происходит от кристаллографического термина, характеризующего симметрию кристаллов этого вещества). При нагревании она плавится (113 °С), превращаясь в подвижную желтую жидкость, состоящую из таких же молекул. При дальнейшем нагревании происходит разрыв циклов и образование очень длинных полимерных молекул – расплав темнеет и становится очень вязким. Это так называемая -сера S n . Кипит сера (445 °С) в виде двухатомных молекул S 2 , аналогичных по строению молекулам кислорода. Строение этих молекул также, как и молекул кислорода, не может быть описано в рамках модели ковалентной связи. Кроме того существуют и другие аллотропные модификации серы.
В природе встречаются месторождения самородной серы, из которых ее и добывают. Большая часть добываемой серы используется для производства серной кислоты. Часть серы используют в сельском хозяйстве для защиты растений. Очищенная сера применяется в медицине для лечения кожных заболеваний.
Из водородных соединений серы наибольшее значение имеет сероводород (моносульфан) H 2 S. Это бесцветный ядовитый газ с запахом тухлых яиц. В воде он малорастворим. Растворение физичекое. В незначительной степени в водном растворе происходит протолиз молекул сероводорода и в еще меньшей степени – образующихся при этом гидросульфид-ионов (см. приложение 13). Тем не менее, раствор сероводорода в воде называют сероводородной кислотой (или сероводородной водой).

На воздухе сероводород сгорает:

2H 2 S + 3O 2 = 2H 2 O + SO 2 (при избытке кислорода).

Качественной реакцией на присутствие сероводорода в воздухе служит образование черного сульфида свинца (почернение фильтровальной бумажки, смоченной раствором нитрата свинца:

H 2 S + Pb 2 + 2H 2 O = PbS + 2H 3O

Реакция протекает в этом направлении из-за очень малой растворимости сульфида свинца.

Кроме сероводорода, сера образует и другие сульфаны H 2 S n , например, дисульфан H 2 S 2 , аналогичный по строению пероксиду водорода. Это тоже очень слабая кислота; ее солью является пирит FeS 2 .

В соответствии с валентными возможностями своих атомов сера образует два оксида : SO 2 и SO 3 . Диоксид серы (тривиальное название – сернистый газ) – бесцветный газ с резким запахом, вызывающим кашель. Триоксид серы (старое название – серный ангидрид) – твердое крайне гигроскопичное немолекулярное вещество, при нагревании переходящее в молекулярное. Оба оксида кислотные. При реакции с водой образуют соответственно сернистую и серную кислоты .
В разбавленных растворах серная кислота – типичная сильная кислота со всеми характерными для них свойствами.
Чистая серная кислота, а также ее концентрированные растворы – очень сильные окислители, причем атомами-окислителями здесь являются не атомы водорода, а атомы серы, переходящие из степени окисления +VI в степень окисления +IV. В результате при ОВР с концентрированной серной кислотой обычно образуется диоксид серы, например:

Cu + 2H 2 SO 4 = CuSO 4 + SO 2 + 2H 2 O;
2KBr + 3H 2 SO 4 = 2KHSO 4 + Br 2 + SO 2 + 2H 2 O.

Таким образом, с концентрированной серной кислотой реагируют даже металлы, стоящие в ряду напряжений правее водорода (Cu, Ag, Hg). Вместе с тем с концентрированной серной кислотой не реагируют некоторые довольно активные металлы (Fe, Cr, Al и др.), это связано с тем, что на поверхности таких металлов под действием серной кислоты образуется плотная защитная пленка, препятствующая дальнейшему окислению. Это явление называется пассивацией .
Будучи двухосновной кислотой, серная кислота образует два ряда солей : средние и кислые. Кислые соли выделены только для щелочных элементов и аммония, существование других кислых солей вызывает сомнение.
Большинство средних сульфатов растворимо в воде и, так как сульфат-ион практически не является анионным основанием, не подвергаются гидролизу по аниону.
Современные промышленные методы производства серной кислоты основаны на получении диоксида серы (1-й этап), окислении его в триоксид (2-й этап) и взаимодействии триоксида серы с водой (3-й) этап.

Диоксид серы получают сжигая в кислороде серу или различные сульфиды:

S + O 2 = SO 2 ;
4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2 .

Процесс обжига сульфидных руд в цветной металлургии всегда сопровождается образованием диоксида серы, который и идет на производство серной кислоты.
В обычных условиях окислить кислородом диоксид серы невозможно. Окисление проводят при нагревании в присутствии катализатора – оксида ванадия(V) или платины. Несмотря на то, что реакция

2SO 2 + O 2 2SO 3 + Q

обратима, выход достигает 99 %.
Если пропускать образующуюся газовую смесь триоксида серы с воздухом через чистую воду, большая часть триоксида серы не поглощается. Чтобы предотвратить потери, газовую смесь пропускают через серную кислоту или ее концентрированные растворы. При этом образуется дисерная кислота:

SO 3 + H 2 SO 4 = H 2 S 2 O 7 .

Раствор дисерной кислоты в серной называют олеумом и часто представляют как раствор триоксида серы в серной кислоте.
Разбавляя олеум водой, можно получить как чистую серную кислоту, так и ее растворы.

1.Cоставьте структурные формулы
а) диоксида серы, б) триоксида серы,
в) серной кислоты, г) дисерной кислоты.

Хлор образует четыре кислородсодержащие кислоты: хлорнотистую, хлористую, хлорноватую и хлорную.

Хлорноватистая кислота НСlO образуется при взаимодействии хлора с водой, а также ее солей с сильными минеральными кислотами. Она относится к слабым кислотам, очень неустойчива. Состав продуктов реакции ее разложения зависит от условий. При сильном освещении хлорноватистой кислоты, наличии в растворе восстановителя, а также длительном стоянии она разлагается с выделением атомарного кислорода: НСlO = HСl + O

В присутствии водоотнимающих веществ образуется оксид хлора (I): 2 НСlO = 2 Н2О + Сl2O

Поэтому при взаимодействии хлора с горячим раствором щелочи образуется соли не соляной и хлорноватистой, а соляной и хлорноватой кислот: 6 NаОН + 3 Сl2 = 5 NаСl + NаСlО3 + 3 Н2О

Соли хлорноватистой кислоты - г и п о х л о р и т ы - очень сильные окислители. Они образуются при взаимодействии хлора со щелочами на холоду. Одновременно образуются соли соляной кислоты. Из таких смесей наибольшее распространение получили хлорная известь и жавелевая вода.

Хлористая кислота НСlO2 образуется при действии концентрированной серной кислоты на хлориты щелочных металлов, которые получаются как промежуточные продукты при электролизе растворов хлоридов щелочных металлов в отсутствие диафрагмы между катодным и анодным пространствами. Это слабая, неустойчивая кислота, очень сильный окислитель в кислой среде. При взаимодействии ее с соляной кислотой выделяется хлор: НСlO2 + 3 НС1 = Сl2 + 2 Н2О

Хлорноватая кислота НСlO3 образуется при действии на ее соли -х л о р а т ы - серной кислоты. Это очень неустойчивая кислота, очень сильный окислитель. Может существовать только в разбавленных растворах. При упаривании раствора НСlO3 при низкой температуре в вакууме можно получить вязкий раствор, содержащий около 40 % хлорной кислоты. При более высоком содержании кислоты раствор разлагается со взрывом. Разложение со взрывом происходит и при меньшей концентрации в присутствии восстановителей. В разбавленных растворах хлорная кислота проявляет окислительные свойства, причем реакции протекают вполне спокойно:

НСlO3 + 6 НВr = НСl + 3 Вr2 + 3 Н2О

Соли хлорноватой кислоты - хлораты - образуются при электролизе растворов хлоридов в отсутствие диафрагмы между катодным и анодным пространствами, а также при растворении хлора в горячем растворе щелочей, как показано выше. Образующийся при электролизе хлорат калия (бертолетова соль) слабо растворяется в воде и в виде белого осадка легко отделяется от других солей. Как и кислота, хлораты - довольно сильные окислители:

КСlO3 + 6 НСl = КСl + 3 Сl2 + 3 Н2О

Хлораты применяются для производства взрывчатых веществ, а также получения кислорода в лабораторных условиях и солей хлорной -кислоты - п е р х л о р а т о в. При нагревании бертолетовой соли в присутствии диоксида марганца МпО2, играющего роль катализатора, выделяется кислород. Если же нагревать хлорат калия без катализатора, то он разлагается с образованием калиевых солей хлороводородной и хлорной кислот:

2 КСlО3 = 2 КСl + 3 O2

4 КСlO3 = КСl + 3 КСlO4

При обработке перхлоратов концентрированной серной кислотой можно получить хлорную кислоту:

КСlO4 + Н2SO4 = КНSO4 + НСlO4

Это самая сильная кислота. Она наиболее устойчива из всех кислород содержащих кислот хлора, однако безводная кислота при нагревании, встряхивании или контакте с восстановителями может разлагаться со взрывом. Разбавленные растворы хлорной кислоты вполне устойчивы и безопасны в работе. Хлораты калия, рубидия, цезия, аммония и большинства органических оснований плохо растворяются в воде.

В промышленности перхлорат калия получают электролитическим окислением бертолетовой соли:

2 Н+ + 2 е- = Н2­ (на катоде)

СlО3- - 2 е- + Н2О = СlO4- + 2 Н+ (на аноде)

Биологическая роль.

он относится к жизненно необходимым незаменимым элементам. В организме человека 100 г.

Ионы хлора играют весьма важную биологическую роль. Входя вместе с ионами К+, Mg2+, Са2+, НСО~, Н3Р04 и белками играют главенствующую роль в создании определенного уровня осмотического давления (осмотический гомеостаз) плазмы крови, лимфы, спиномозговой жидкости и т. д.

Хлор-ион участвует в регуляции водно-солевого обмена и объема жидкости, удерживаемой тканями, подержании рН внутриклеточной жидкости и мембранного потенциала, создаваемого работой натрий-калиевого насоса, что объясняется (как и в случае его участия в осмосе) способностью диффундировать через клеточные мембраны подобно тому, как это делают ионы Na+, К+. Ион хлора - необходимый компонент (совместно с ионами Н2Р04, HSO4, ферментами и др.) желудочного сока, входящий в состав соляной кислоты.

Способствуя пищеварению, соляная кислота уничтожает и разнообразные болезнетворные бактерии.

При повышении ст .ок . хлора устойчивость кислот тоже растет .

Рост стабильности объясняется:

а) упрочнением связей в анионах за счет уменьшения числа НЭП у хлора,

б) увеличением отношения числа π-перекрываний к количеству σ-связей от 0/1 в ClO − до 3/4 в ClO − 4 . Сравните графические формулы кислот:

H – O - Cl , H - O - Cl = O, H – O – Cl = O Н – O – Cl = О

в) от НСlO к HClO 4 растет симметрия аниона (как за счет увеличения

числа атомов кислорода, так и в результате снижения поляризующего действия

водорода из-за ослабления его связи с анионом).

г) снижается угол атаки атома хлора (т.е. его пространственная доступность для взаимодействия).

Кислотные свойства гидроксидов галогенов. Кислотно-оснóвные свойства

любого гидроксида зависят от соотношения прочностей связей H − O и O − Э во

фрагменте H − O − Э. Очевидно, чем больше электроотрицательность элемента, тем в большей степени электронная плотность от связи H − O смещена на связь O – Э

(H − O − Э) и тем более кислотные свойства проявляет гидроксид.

Поэтому важным фактором является природа галогена. Так, при переходе от хлора к йоду в соответствие с уменьшением значения Э.О. кислотные свойства гидроксидов снижаются. Причем настолько, что йодноватистая кислота диссоциирует по кислотному типу в меньшей степени НIO → Н + + IO - (K d = 4 ∙10 − 13),

чем по основному: IOH → I + + OH − (K d = 3 ∙10 − 10).

Возможна даже реакция нейтрализации (но обратимая): IOH + HNO 3 → INO 3 + H 2 O .

Соли кислот хлора, как более устойчивые (чем кислоты) соединения, все

выделены в свободном состоянии, но и их активность увеличивается с понижением ст.ок. Cl. Так, KClO 3 (бертолетова соль) окисляет йодид-ионы лишь в кислой среде, а KClO - и в нейтральной.

2.8.1. Хлорноватистая кислота HCl +1 O H–O–Cl (гипохлориты)

Физические свойства. Существует только в виде разбавленных водных растворов.

Получение.

Cl 2 + H 2 O ↔ HCl + HClO

Химические свойства.

HClO - слабая кислота и сильный окислитель:

1) Разлагается, выделяя атомарный кислород



HClO – на свету → HCl + O HClO – об. усл. → H 2 O + Cl 2 O НClO --- t → НCl + НClO 3

2) Со щелочами дает соли - гипохлориты

HClO + KOH → KClO + H 2 O СаОСl 2 – белильная известь (хлорка)

СаОСl 2 + СО 2 + H 2 O → СаСО 3 + СаСl 2 + HClO (HCl + O)

3)с сильным восстановителем НI

2HI + HClO → I 2 ↓ + HCl + H 2 O

2.8.2. Хлористая кислота HCl +3 O 2 H–O–Cl=O (хлориты)

Физические свойства. Существует только в водных растворах.

Получение

Образуется при взаимодействии пероксида водорода с оксидом хлора (IV), который получают из бертоллетовой соли и щавелевой кислоты в среде H 2 SO 4:

2KClO 3 + H 2 C 2 O 4 + H 2 SO 4 → K 2 SO 4 + 2CO 2 + 2СlO 2 + 2H 2 O

2ClO 2 + H 2 O 2 → 2HClO 2 + O 2

Химические свойства

HClO 2 - слабая кислота и сильный окислитель.

1)HClO 2 + KOH → KClO 2 + H 2 O

KClO 2 + КI + H 2 SO 4 → I 2 +KCl + K 2 SO 4 + H 2 O

2) Неустойчива, при хранении разлагается

4HClO 2 → HCl + HClO 3 + 2ClO 2 + H 2 O

5HClO 2 ---t→ 3HClO 3 + Cl 2 + H 2 O

2.8.3. Хлорноватая кислота HCl +5 O 3 (хлораты)

Физические свойства: Устойчива только в водных растворах.

Получение: Ba (ClO 3) 2 + H 2 SO 4 → 2HClO 3 + BaSO 4 ↓

Химические свойства

HClO 3 - Сильная кислота и сильный окислитель; соли хлорноватой кислоты –

хлораты:

6P + 5HClO 3 → 3P 2 O 5 + 5HCl HClO 3 + KOH → KClO 3 + H 2 O

- KClO 3 - Бертоллетова соль ; ее получают при пропускании хлора через подогретый (40°C) раствор KOH: 3Cl 2 + 6KOH → 5KCl + KClO 3 + 3H 2 O

Бертоллетову соль используют в качестве окислителя; при нагревании она разлагается:

4KClO 3 – без кат → KCl + 3KClO 4 2KClO 3 – MnO2 кат → 2KCl + 3O 2

2.8.4. Хлорная кислота HCl +7 O 4 (перхлораты)

Физические свойства: Бесцветная жидкость, t°кип. = 25°C, t°пл.= -101°C.

Получение: KClO 4 + H 2 SO 4 → KHSO 4 + HClO 4

Химические свойства:

HClO 4 - очень сильная кислота и очень сильный окислитель;

соли хлорной кислоты - перхлораты .

1) HClO 4 + KOH → KClO 4 + H 2 O

2) При нагревании хлорная кислота и ее соли разлагаются:

4HClO 4 – t° → 4ClO 2 + 3O 2 + 2H 2 O KClO 4 – t° → KCl + 2O 2

Бромистый водород HBr (БРОМИДЫ)

Физические свойства

Бесцветный газ, хорошо растворим в воде; t°кип. = -67°С; t°пл. = -87°С.

Получение

1) 2NaBr + H 3 PO 4 – t ° → Na 2 HPO 4 + 2HBr 2) PBr 3 + 3H 2 O → H 3 PO 3 + 3HBr

Химические свойства

Водный раствор бромистого водорода - бромистоводородная кислота еще более сильная, чем соляная. Она вступает в те же реакции, что и HCl

1) Диссоциация: HBr ↔ H+ + Br -

2) С металлами, стоящими в ряду напряжения до водорода:

Mg + 2HBr → MgBr 2 + H 2

3) с оксидами металлов:

CaO + 2HBr → CaBr 2 + H 2 O

4) с основаниями и аммиаком:

NaOH + HBr → NaBr + H 2 O Fe(OH) 3 + 3HBr → FeBr 3 + 3H 2 O NH 3 + HBr → NH 4 Br

5) с солями

MgCO 3 + 2HBr → MgBr 2 + H 2 O + CO 2

Качественая реакция: AgNO 3 + HBr → AgBr↓ + HNO 3

Образование нерастворимого в кислотах желтого осадка бромида серебра служит для обнаружения аниона Br - в растворе.

6) восстановительные свойства:

2HBr + H 2 SO 4 (конц.) → Br 2 + SO 2 + 2H 2 O 2HBr + Cl 2 → 2HCl + Br 2

Из кислородных кислот брома известны

Слабая бромноватистая HBr +1 O и

Сильная бромноватая HBr +5 O 3 .

Иодистый водород (йодиды)

Физические свойства: Бесцветный газ с резким запахом, хорошо растворим в воде,

t°кип. = -35°С; t°пл. = -51°С.

Получение:

1) I 2 + H 2 S → S + 2HI 2) 2P + 3I 2 + 6H 2 O → 2H 3 PO 3 + 6HI

Химические свойства

1) Раствор HI в воде - сильная йодистоводородная кислота:

HI ↔ H + + I - 2HI + Ba(OH) 2 → BaI 2 + 2H 2 O

Соли йодистоводородной кислоты - йодиды (др. реакции HI см. св-ва HCl и HBr)

2) HI - очень сильный восстановитель:

2HI + Cl 2 → 2HCl + I 2

8HI + H 2 SO 4 (конц.) → 4I 2 + H 2 S + 4H 2 O

5HI + 6KMnO 4 + 9H 2 SO 4 → 5HIO 3 + 6MnSO 4 + 3K 2 SO4 + 9H 2 O

3) Качественая реакция: Образование нерастворимого в кислотах темно-желтый осадка йодида серебра, служит для обнаружения аниона йода в растворе.

NaI + AgNO 3 → AgI↓ + NaNO 3 HI + AgNO 3 → AgI↓ + HNO 3

3.0.1. Кислородные кислоты йода (йодаты)

а) Йодноватая кислота HI +5 O 3

Бесцветное кристаллическое вещество, t°пл.= 110°С, хорошо растворимое в воде.

Получают: 3I 2 + 10HNO 3 → 6HIO 3 + 10NO + 2H 2 O

HIO 3 - сильная кислота (соли - йодаты) и сильный окислитель.

б) Йодная кислота H 5 I +7 O 6

Кристаллическое гигроскопичное вещество, хорошо растворимое в воде,

t°пл.= 130°С. Слабая кислота (соли - перйодаты); сильный окислитель.

Все хлора оксиды имеют резкий запах, термически и фотохимически нестабильны, склонны к взрывному распаду. +1 Сl 2 О Т. Пл о. С Т. кип °С -120, 6 +3 +4 +4 +5 +6 +7 Сl 2 О 3 Сl. O 2 Сl 2 O 4 Сl 2 O 5 Сl 2 O 6 Сl 2 O 7 не получен НСl. О 2 -117 9, 7 2, 0 -59 не получен 44, 5 -93, 4 203 НСl. О 3 3 87 НСl. О 4 хлорнова хлористая тистая хлорнова тая сильная очень сильная гипохлориты хлораты Na. Cl. O 2 КСl. О 3 перхлораты слабая средней силы хлорная КСl. О 4

§ Все соединениям с хлором в положительных степенях являются очень сильными окислителями. § Наиболее сильно окислительные свойства выражены у хлорноватистой кислоты, хотя она слабая и неустойчивая. § Свободные кислородсодержащие кислоты хлора неустойчивы и, кроме хлорной кислоты, существуют только в растворе. Все они являются сильными окислителями. § Сила кислот и их окислительные свойства различные понятия. § В ряду HCl. O - HCl. O 2 - HCl. O 3 - HCl. O 4 устойчивость и сила кислот растет, а реакционная способность уменьшается.

Отношение галогенов к воде ü 2 F 20 + 2 H 2 O− 2 → 4 HF + O 2 взаимодействие, F 2 − окислитель, ü Cl 20 + H 2 O ↔ HCl+1 O + HCl− 1 взаимодействие, Cl 20 − окислитель, восстановитель; реакция – диспропорционирования, ü Br 20 + H 2 O ↔ HBr +1 O + HBr − 1 хорошо растворим, взаимодействия практически не происходит; Br 20 − окислитель, восстановитель; реакция – диспропорционирования, ü I 2 + H 2 O ≠ плохо растворим, взаимодействия практически не происходит; ü At 2 + H 2 O ≠ плохо растворим, взаимодействия практически не происходит

Оксиды хлора Параметр сравнения Оксид хлора (I) хлора (IV) Агрегатное состояние при н. у. , цвет Буроватожелтый газ; при t°

Параметр сравнения Оксид хлора (I) Оксид хлора (IV) Оксид хлора (VII) Термическая устойчивость Термически неустойчив, разлагается на свету Термически очень неустойчив Медленно разлагается при комнатной температуре Наиболее устойчивый оксид хлора, разлагается при нагревании до 120°С Токсичность Ядовит, поражает дыхательные пути Токсичный Сильно ядовит Токсичный Отношение к воде Хорошо растворяются, взаимодействуют с водой

Методы получения оксидов хлора Оксид хлора Название метода, УХР Оксид хлора (I) Взаимодействие оксида ртути (II) c хлором при 0°С: Hg. O(твердый) + 2 Cl 2(газ) → Hg. Cl 2 + Cl 2 O Оксид хлора (IV) 1) Взаимодействие хлората калия со щавелевой кислотой: KCl. O 3 + H 2 C 2 O 4 → K 2 CO 3 + 2 Cl. O 2 + CO 2 + H 2 O (лабораторный метод); 2) Пропускание сернистого газа SO 2 в подкисленный раствор хлората натрия: 2 Na. Cl. O 3 + SO 2 + H 2 SO 4 = 2 Na. HSO 4 + 2 Cl. O 2 (промышленный метод) Оксид хлора (VI) Окисление оксида хлора (IV) озоном: 2 Cl. O 2+2 O 3 = 2 O 2 + Cl 2 O 6 Оксид хлора (VII) Взаимодействие хлорной кислоты с фосфорным ангидридом – оксидом фосфора (V): 8 HCl. O 4 + P 4 O 10 → 4 Cl 2 O 7 + 2 H 4 P 2 O 7

Химические свойства оксидов хлора Cl 2 O – оксид хлора (I) Cl 2+1 O + H 2 O = 2 HCl+1 O не ОВР, Cl 2+1 O + 2 KOH = 2 KCl+1 O + H 2 O не ОВР, Cl. O 2 – оксид хлора (IV) 2 Cl+4 O 2 + H 2 O = HCl+3 O 2 + HCl+5 O 3 ОВР, Cl+4 – и восстановитель, и окислитель 2 Cl+4 O 2 + 2 KOH = KCl+3 O 2 + KCl+5 O 3 + H 2 O ОВР, Cl+4 – и восстановитель, и окислитель Cl 2 O 6 – оксид хлора (VI) Cl 2+6 O 6 + H 2 O = HCl+5 O 3 + HCl+7 O 4 ОВР, Cl+6 – и восстановитель, и окислитель Cl 2+6 O 6 + 2 KOH = KCl+5 O 3 + KCl+7 O 4 + H 2 O ОВР, Cl+6 – и восстановитель, и окислитель Cl 2 O 7 – оксид хлора (VII) Cl 2+7 O 7 + H 2 O = 2 HCl+7 O 4 не ОВР, а Cl 2+7 O 7 + 2 KOH = 2 KCl+7 O 4 + H 2 O не ОВР,

Кислородсодержащие кислоты хлора Физические свойства, методы получения Химические свойства– отношение к нагреванию, растворам щелочей и к основным оксидам

Кислородсодержащие кислоты хлора Формула кислоты Степень окисления Cl в кислоте НСl+1 О НCl+3 O 2 НCl+5 O 3 НCl+7 O 4 +1 +3 +5 +7 Увеличивается Термическая устойчивость Увеличивается Сила кислоты Увеличивается Очень слабая кислота Слабая кислота частично диссоциирует в воде Форма существования Кислота средней силы, ближе к сильным Одна из самых сильных кислот диссоциирует практически необратимо существуют только в растворе выделена в свободном виде

Хлорноватистая кислота получается при растворении оксида хлора (I) в воде (1): (1) Cl 2 O + H 2 O → 2 HCl. O Хлорноватистая кислота − хлорная вода, раствор хлора в воде. Получают в хлораторе пропусканием хлора в воду до насыщения (1 объём воды растворяет при 20°C около 2, 2 объёма газообразного хлора) (2): (2) Cl 2 + H 2 O ⇌ HCl. O + HCl Образующаяся HCl. O разлагается на свету на O 2 и HCl. Хлорная вода - сильный окислитель, применяется для обеззараживания воды и отбеливания тканей.

Хлористая кислота Раствор кислоты получают из её солей − хлоритов Ba(Cl. O 2)2 + H 2 SO 4 → 2 HCl. O 2 + Ba. SO 4↓ А также по реакции: 2 Cl. O 2 + Н 2 O → НCl. O 2 + НCl. O 3 Хлористая кислота является кислотой средней силы, ближе к слабой Хлориты используют для отбеливания.

Хлорноватая кислота водных растворах при концентрации ниже 30% на холоду довольно устойчива; в более концентрированных растворах распадается: В 8 HCl. O 3 = 4 HCl. O 4 + 3 O 2 + 2 Cl 2 + 2 H 2 O. Хлорноватая кислота - сильный окислитель; окислительная способность увеличивается с возрастанием концентрации и температуры, например в 40%-ной кислоте воспламеняется, фильтровальная бумага. Хлорноватую кислоту в лабораторных условиях получают при взаимодействии хлората бария с разбавленной серной кислотой: Ba(Cl. O 3)2 + H 2 SО 4 = Ba. SO 4↓+ 2 HCl. O 3.

Хлорная кислота Безводная хлорная кислота получается при взаимодействии перхлоратов натрия или калия с концентрированной серной кислотой или водных растворов хлорной кислоты с олеумом, а также при взаимодействии оксида хлора (VII) с водой: KCl. O 4 + H 2 SO 4 → KHSO 4 + HCl. O 4 Cl 2 O 7 + Н 2 O → 2 НCl. O 4

Термическая устойчивость кислот – отношение к нагреванию Хлорная кислота (HCl. O 4) Ø Удается выделить в свободном виде; Ø При умеренном нагревании с фосфорным ангидридом разлагается § 2 HCl. O 4 + P 2 O 5 = Cl 2 O 7 + 2 HPO 3 Хлорноватая кислота (HCl. O 3) Ø При слабом нагревании разлагается § 8 HCl. O 3 = 4 HCl. O 4 + 3 O 2 + 2 Cl 2 + 2 H 2 O Хлористая кислота (HCl. O 2) Ø Очень неустойчива, разлагается при комнатной температуре на свету § 4 НСl. O 2 = НCl + НСl. O 3 + 2 Cl. O 2 + H 2 O Хлорноватистая кислота (HCl. O) Ø 2 HCl. O = 2 HCl + O 2 (под действием света)

Отношение к растворам щелочей При взаимодействии кислородсодержащих кислот хлора с растворами щелочей по реакции обмена образуется соль этой кислоты и вода. Происходит реакция нейтрализации. HCl. O 2 + Na. OH = Na. Cl. O 2 + H 2 O; HCl. O 3 + KOH = KCl. O 3 + H 2 O; Отношение к основным оксидам При взаимодействии кислородсодержащих кислот хлора с основными оксидами по реакции обмена образуется соль этой кислоты и вода. 2 HCl. O + Na 2 O = 2 Na. Cl. O + H 2 O; 2 HCl. O 4 + Cu. O = Cu(Cl. O 4)2 + H 2 O



Читайте также: